Abstract
Objective: Guided by the theory of planned behaviour (TPB) and health literacy concepts, SIPsmartER is a six-month multicomponent intervention effective at improving SSB behaviours. Using SIPsmartER data, this study explores prediction of SSB behavioural intention (BI) and behaviour from TPB constructs using: (1) cross-sectional and prospective models and (2) 11 single-item assessments from interactive voice response (IVR) technology.Design: Quasi-experimental design, including pre- and post-outcome data and repeated-measures process data of 155 intervention participants.Main Outcome Measures: Validated multi-item TPB measures, single-item TPB measures, and self-reported SSB behaviours. Hypothesised relationships were investigated using correlation and multiple regression models.Results: TPB constructs explained 32% of the variance cross sectionally and 20% prospectively in BI; and explained 13–20% of variance cross sectionally and 6% prospectively. Single-item scale models were significant, yet explained less variance. All IVR models predicting BI (average 21%, range 6–38%) and behaviour (average 30%, range 6–55%) were significant.Conclusion: Findings are interpreted in the context of other cross-sectional, prospective and experimental TPB health and dietary studies. Findings advance experimental application of the TPB, including understanding constructs at outcome and process time points and applying theory in all intervention development, implementation and evaluation phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.