Abstract

The successful prediction of protein subcellular localization directly from protein primary sequence is useful to protein function prediction and drug discovery. In this paper, by using the concept of pseudo amino acid composition (PseAAC), the mycobacterial proteins are studied and predicted by support vector machine (SVM) and increment of diversity combined with modified Mahalanobis Discriminant (IDQD). The results of jackknife cross-validation for 450 non-redundant proteins show that the overall predicted successful rates of SVM and IDQD are 82.2% and 79.1%, respectively. Compared with other existing methods, SVM combined with PseAAC display higher accuracies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.