Abstract

E-learning is achieved by the deep integration of modern education and information technology, and plays an important role in promoting educational equity. With the continuous expansion of user groups and application areas, it has become increasingly important to effectively ensure the quality of e-learning. Currently, one of the methods to ensure the quality of e-learning is to use mutually independent e-learning behaviour data to build a learning performance predictor to achieve real-time supervision and feedback during the learning process. However, this method ignores the inherent correlation between e-learning behaviours. Therefore, we propose the behaviour classification-based e-learning performance (BCEP) prediction framework, which selects the features of e-learning behaviours, uses feature fusion with behaviour data according to the behaviour classification model to obtain the category feature values of each type of behaviour, and finally builds a learning performance predictor based on machine learning. In addition, because existing e-learning behaviour classification methods do not fully consider the process of learning, we also propose an online behaviour classification model based on the e-learning process called the process-behaviour classification (PBC) model. Experimental results with the Open University Learning Analytics Dataset (OULAD) show that the learning performance predictor based on the BCEP prediction framework has a good prediction effect, and the performance of the PBC model in learning performance prediction is better than traditional classification methods. We construct an e-learning performance predictor from a new perspective and provide a new solution for the quantitative evaluation of e-learning classification methods.

Highlights

  • E-learning is achieved by the deep integration of modern education and information technology, and plays an important role in promoting educational equity

  • We propose the behaviour classification-based E-learning performance prediction framework (BCEP prediction framework), summarize the classic e-learning classification methods, analyse the e-learning process in detail, propose the process-behaviour classification model (PBC model), and construct an e-learning performance predictor based on the PBC model

  • 6 machine learning methods were selected, 18 learning performance predictors were constructed based on the 3-feature data above, and the effectiveness of the behaviour classificationbased e-learning performance (BCEP) prediction framework was verified by comprehensively comparing the prediction results of the 18 learning performance predictors

Read more

Summary

Introduction

E-learning is achieved by the deep integration of modern education and information technology, and plays an important role in promoting educational equity. Researchers typically use the behaviour of each e-learning category as an independent predictor of the performance of e-learning to build predictive models.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.