Abstract

DFT + U is a widely used treatment in the density functional theory (DFT) to deal with correlated materials that contain open-shell elements, whereby the quantitative and sometimes even qualitative failures of local and semi-local approximations can be corrected without much computational overhead. However, finding appropriate U parameters for a given system and structure is non-trivial and computationally intensive, because the U value has generally a strong chemical and structural dependence. In this work, we address this issue by building a machine learning (ML) model that enables the prediction of material- and structure-specific U values at nearly no computational cost. Using Mn–O system as an example, the ML model is trained by calibrating DFT + U electronic structures with the hybrid functional results of more than 3000 structures. The model allows us to determine an accurate U value (MAE = 0.128 eV, R 2 = 0.97) for any given Mn–O structure. Further analysis reveals that M–O bond lengths are key local structural properties in determining the U value. This approach of the ML U model is universally applicable, to significantly expand and solidify the use of the DFT + U method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.