Abstract

Stock market facilitates the economic activities that contribute to a nation’s growth and prosperity. This is viewed as one of the lucrative avenues for financial investment. Although the stock market is a thrilling and potential opportunity to grow one’s money, it brings along with it certain challenges, because, there is no universal rule that suggests profitable investments. Investors, corporate and advisors employ several techniques like fundamental and technical analysis, trend analysis and other analysis to suggest stocks that will give best yields but such tools are neither consistent nor foolproof in the prediction of stock prices. But human exertions to convert the tacit knowledge into explicit knowledge has never found any alternate. More, the uncertainties, more the efforts to know them with certainty. Digital economy with its advanced technological tools aids the pursuit of not only understanding uncertainties but also predicting the future with maximum precision. The most prominent techniques in the technological realm includes the usage of artificial neural networks (ANNs) and Genetic Algorithms. This paper discusses the stock prices forecasting ability of Bombay stock exchange trend using genetically evolved neural networks, the input being the closing price of the previous five years and output being the price for the next day. Risk (Standard deviation), Average Return, variance and Market price are chosen as indicators of the performance. The objective of this study is to give an overview of the application of artificial neural network in predicting stock market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.