Abstract

De novo design of self-assembled materials hinges upon our ability to relate macroscopic properties to individual building blocks, thus characterizing in such supramolecular architectures a wide range of observables at varied time/length scales. This work demonstrates that quantum mechanical derived force fields (QMD-FFs) do satisfy this requisite and, most importantly, do so in a predictive manner. To this end, a specific FF, built solely based on the knowledge of the target molecular structure, is employed to reproduce the spontaneous transition to an ordered liquid crystal phase. The simulations deliver a multiscale portrait of such self-assembly processes, where conformational changes within the individual building blocks are intertwined with a 200 ns ensemble reorganization. The extensive characterization provided not only is in quantitative agreement with the experiment but also connects the time/length scales at which it was performed. Realizing QMD-FF predictive power and unmatched accuracy stands as an important leap forward for the bottom-up design of advanced supramolecular materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call