Abstract

This study presents a major update and full evaluation of a speech intelligibility (SI) prediction model previously introduced by Scheidiger, Carney, Dau, and Zaar [(2018), Acta Acust. United Ac. 104, 914-917]. The model predicts SI in speech-in-noise conditions via comparison of the noisy speech and the noise-alone reference. The two signals are processed through a physiologically inspired nonlinear model of the auditory periphery, for a range of characteristic frequencies (CFs), followed by a modulation analysis in the range of the fundamental frequency of speech. The decision metric of the model is the mean of a series of short-term, across-CF correlations between population responses to noisy speech and noise alone, with a sensitivity-limitation process imposed. The decision metric is assumed to be inversely related to SI and is converted to a percent-correct score using a single data-based fitting function. The model performance was evaluated in conditions of stationary, fluctuating, and speech-like interferers using sentence-based speech-reception thresholds (SRTs) previously obtained in 5 normal-hearing (NH) and 13 hearing-impaired (HI) listeners. For the NH listener group, the model accurately predicted SRTs across the different acoustic conditions (apart from a slight overestimation of the masking release observed for fluctuating maskers), as well as plausible effects in response to changes in presentation level. For HI listeners, the model was adjusted to account for the individual audiograms using standard assumptions concerning the amount of HI attributed to inner-hair-cell (IHC) and outer-hair-cell (OHC) impairment. HI model results accounted remarkably well for elevated individual SRTs and reduced masking release. Furthermore, plausible predictions of worsened SI were obtained when the relative contribution of IHC impairment to HI was increased. Overall, the present model provides a useful tool to accurately predict speech-in-noise outcomes in NH and HI listeners, and may yield important insights into auditory processes that are crucial for speech understanding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.