Abstract

Traffic flow forecasting is an essential aspect of intelligent traffic management. It enables timely and proactive management of modern transport systems, increasing efficiency and resilience. However, accurately predicting short-term traffic flow is challenging due to its uncertain and interconnected nature. Traditional methods like loop detectors and high-resolution cameras have limited scalability. To address this, we propose a two-stage approach using low-resolution surveillance cameras. The first stage involves a vision-based data extraction module with calibration, vehicle detection, and tracking. Integration of Region of Interest, fine-tuning, and post-processing improves the robustness of low-resolution videos. In the second stage, a novel deep learning model extracts spatio-temporal features from historical traffic data for short-term flow prediction. The proposed model outperforms the STGCN model, achieving an 11.19% increase in MAE, a 12.37% improvement in RMSE and a 4.97% reduction in inference time. These advances highlight its potential for further research and applications in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.