Abstract

We consider the problem of robust no reference (NR) video quality assessment (VQA) where the algorithms need to have good generalization performance when they are trained and tested on different datasets. We specifically address this question in the context of predicting video quality for compression and transmission applications. Motivated by the success of the spatio-temporal entropic differences video quality predictor in this context, we design a framework using convolutional neural networks to predict spatial and temporal entropic differences without the need for a reference or human opinion score. This approach enables our model to capture both spatial and temporal distortions effectively and allows for robust generalization. We evaluate our algorithms on a variety of datasets and show superior cross database performance when compared to state of the art NR VQA algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.