Abstract

AimPredation on livestock is one of the primary concerns for Mexican wolf (Canis lupus baileyi) recovery because it causes economic losses and negative attitudes toward wolves. Our objectives were to develop a spatial risk model of cattle depredation by Mexican wolves in the USA portion of their recovery area to help reduce the potential for future depredations. LocationArizona and New Mexico, USA. MethodsWe used a presence-only maximum entropy modeling approach (Maxent) to develop a risk model based on confirmed depredation incidents on public lands. In addition to landscape and human variables, we developed a model for annual livestock density using linear regression analysis of Animal Unit Month (AUM), and models for abundance of elk (Cervus canadensis), mule deer (Odocoileus hemionus) and white-tailed deer (Odocoileus virginiana) using Maxent, to include them as biotic variables in the risk model. We followed current recommendations for controlling model complexity and other sources of bias. ResultsThe primary factors associated with increased risk of depredation by Mexican wolf were higher canopy cover variation and higher relative abundance of elk. Additional factors with increased risk but smaller effect were gentle and open terrain, and greater distances from roads and developed areas. Main conclusionsThe risk map revealed areas with relatively high potential for cattle depredations that can inform future expansion of Mexican wolf distribution (e.g., by avoiding hotspots) and prioritize areas for depredation risk mitigation including the implementation of active non-lethal methods in depredation hotspots. We suggest that livestock be better protected in or moved from potential hotspots, especially during periods when they are vulnerable to depredation (e.g. calving season). Our approach to create natural prey and livestock abundance variables can facilitate the process of spatial risk modeling when limitations in availability of abundance data are a challenge, especially in large-scale studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.