Abstract

Solvents may significantly affect the phase behavior and kinetics of chemical reactions. Especially for complex reactions performed in mixtures of different solvents, it requires a high experimental effort to quantify these effects. This work focuses on a novel thermodynamic approach to predict solvent effects on both reaction rates and phase behavior. We applied this method to the homogeneously catalyzed hydroaminomethylation of 1-decene in a thermomorphic multiphase system of methanol and n-dodecane. For that purpose, the thermodynamic activities of the reactants and the liquid–liquid equilibrium of the multicomponent reaction system were successfully modeled using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT). An increasing concentration of n-dodecane in the solvent mixture was predicted not only to limit the working space for the reaction due to unwanted phase separation but also to massively reduce the reaction rate. These results were in good agreement with batch experiments and homogeneity tests performed in this work. The approach is applicable to a wide variety of liquid-phase reactions and thus is a valuable tool for reducing the experimental effort to a minimum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call