Abstract

Soil erosion hazard is one of the prominent climate hazards that negatively impact countries’ economies and livelihood. According to the global climate index, Sri Lanka is ranked among the first ten countries most threatened by climate change during the last three years (2018–2020). However, limited studies were conducted to simulate the impact of the soil erosion vulnerability based on climate scenarios. This study aims to assess and predict soil erosion susceptibility using climate change projected scenarios: Representative Concentration Pathways (RCP) in the Central Highlands of Sri Lanka. The potential of soil erosion susceptibility was predicted to 2040, depending on climate change scenarios, RCP 2.6 and RCP 8.5. Five models: revised universal soil loss (RUSLE), frequency ratio (FR), artificial neural networks (ANN), support vector machine (SVM) and adaptive network-based fuzzy inference system (ANFIS) were selected as widely applied for hazards assessments. Eight geo-environmental factors were selected as inputs to model the soil erosion susceptibility. Results of the five models demonstrate that soil erosion vulnerability (soil erosion rates) will increase 4%–22% compared to the current soil erosion rate (2020). The predictions indicate average soil erosion will increase to 10.50 t/ha/yr and 12.4 t/ha/yr under the RCP 2.6 and RCP 8.5 climate scenario in 2040, respectively. The ANFIS and SVM model predictions showed the highest accuracy (89%) on soil erosion susceptibility for this study area. The soil erosion susceptibility maps provide a good understanding of future soil erosion vulnerability (spatial distribution) and can be utilized to develop climate resilience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.