Abstract

Soil vapor extraction (SVE) is a widely used technology for the remediation of volatile organic compounds (VOCs) contaminated soils. Residual concentrations of VOCs are crucial for assessing the SVE process and planning when to stop this process, however, the measurement of their residual concentrations in the soil is complicated. Herein, a pseudo-first-order sequential reaction model was established to predict the mass transfer of the BTEX (benzene, toluene, ethylbenzene, xylene) between the soil and off-gas during the SVE process. Based on this mass transfer model, the residual concentrations of BTEX in the soil during the trailing stage could be accurately estimated (R2 > 0.89) by their off-gas concentrations that were directly monitored in real time. Considering the removal efficiency and operating costs, a concept of the remediation target values (RTV) was proposed for the SVE technology, and its relevant model (R2 > 0.92, NRMSE = 6.4–16.8 %) was established based on the experimental data. The remediation endpoint can be further estimated based on the RTV with an overall accuracy of 84–100 %. These findings provide a simple and fast way to predict VOC concentrations in soil with easy-to-know factors and online monitoring of off-gas concentrations and will guide and optimize the SVE process toward more economical and efficient techniques for soil remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call