Abstract

Abstract Cash transfer programs are the most common anti-poverty tool in low- and middle-income countries, reaching more than one billion people globally. Benefits are typically targeted using prediction models. In this paper, we develop an extended targeting assessment framework for proxy means testing that accounts for societal sensitivity to targeting errors. Using a social welfare framework, we weight targeting errors based on their position in the welfare distribution and adjust for different levels of societal inequality aversion. While this approach provides a more comprehensive assessment of targeting performance, our two case studies show that bias in the data, particularly in the form of label bias and unstable proxy means testing weights, leads to a substantial underestimation of welfare losses, disadvantaging some groups more than others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.