Abstract

This paper examines the forecasting performance of Bayesian model averaging (BMA) for a set of single factor models of short-term interest rates. Using weekly and high frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods that are considerably better than those associated with the majority of the short-rate models, but marginally worse than those of the best model in each dataset. We also find that BMA forecasts based on recent predictive likelihoods are preferred to those based on the marginal likelihood of the entire dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.