Abstract

ObjectivesTo externally validate the previously published Mayo clinic model for the prediction of early (<30 days) postoperative renal failure, which relies solely on preoperative estimated glomerular filtration rate (eGFR) and develop a novel model for the prediction of long-term (>30 days) renal function after partial nephrectomy (PN) and radical nephrectomy (RN), including patient factors and nephrometry scores. Patients and methodsRetrospective, single-center cohort study on patients who underwent PN or RN for a unilateral renal tumor between 2003 and 2019 with a preoperative eGFR of at least 15 ml/min/1.73m2. Early postoperative renal failure was defined as eGFR <15 ml/min/1.73 m2 or receipt of dialysis within 30 days. We determined the area under the receiver operating characteristics curve (AUC) to assess the Mayo clinic model's discriminative power. We used hierarchical linear mixed models with backward selection of candidate variables to develop a prediction model for long-term eGFR following PN and RN, separately. Their predictive ability was quantified using the marginal and conditional R2GLMM and an internal validation. ResultsWe included 421 patients (7,548 eGFR observations) who underwent PN and 271 patients (6,530 eGFR observations) who underwent RN. The Mayo clinic model for prediction of early postoperative renal failure following PN and RN showed an AUC of 0.816 (95% CI 0.718–0.920) and 0.825 (95% CI 0.688–0.962), respectively.In multivariable models, long-term eGFR following PN was associated with age, diabetes, the presence of a solitary kidney, tumor diameter and preoperative eGFR, while long-term eGFR following RN was associated with age, body mass index, RENAL nephrometry score and preoperative eGFR. Marginal and conditional R2GLMM were 0.591 and 0.855 for the PN model, and 0.363 and 0.849 for the RN model, respectively. ConclusionsThe Mayo clinic model for short-term renal failure prediction showed good accuracy on external validation. Our long-term eGFR prediction models depend mostly on host factors as opposed to tumor complexity and can aid in decision-making when considering PN vs. RN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.