Abstract

This research developed a model of saturated hydraulic conductivity for golf course and athletic field media. The model was developed from saturated flow data in packed sand cores, for which a pore‐size distribution was derived from particle‐size distribution, bulk density, and measured soil water characteristic data. The pores were first assumed to form an idealized structure, consisting of non‐tortuous capillary tubes of uniform shape and size, and the Hagen–Poiseuille flow equation was applied to compute idealized saturated flow. The idealized saturated flows were compared with saturated flows derived from the measured saturated hydraulic conductivity data. Subsequently, an empirical relationship was established between the two in the form: Qt(m) = c + dQt(h–p), where Qt(m) is the saturated flow through the natural‐structure sand cores and Qt(–p) is the saturated flow through the idealized pore structure for the same core. In our study, parameters c and d had values of −1.675 and 0.308, respectively, and the r2 of the regression had a value of 0.871. The model was applied to 14 golf course sands and produced excellent results with minor anomalies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call