Abstract

Pavement maintenance and repair is a crucial part of pavement management systems. Accurate and reliable pavement performance prediction is the prerequisite for making reasonable maintenance decisions and selecting suitable repair schemes. Rutting deformation, as one of the most common forms of asphalt pavement failures, is a key index for evaluating the pavement performance. To ensure the accuracy of the commonly used prediction models, the input parameters of the models need to be understood, and the coefficients of the models should be locally calibrated. This paper investigates the prediction of the rutting development of pavements with flexible overlays based on the data of the Canadian Long-Term Pavement Performance (C-LTPP) program. Pavement performance data that may be related to rutting were extracted from the survey of Dipstick for data analysis. Then, an artificial neural network (ANN) was adopted to analyze the factors affecting the rut depth, and to establish a model for the rutting development of pavements with flexible overlays. The results of the sensitivity analysis indicate that rutting is not only affected by traffic and climatic conditions, but it is also greatly affected by the thickness of the surface layer and voids in the mixture. Finally, a rutting evaluation index was provided to describe the rutting severity, and the threshold of the pavement maintenance time was proposed based on the prediction results. These results provide a basis for predicting rut development and pavement maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call