Abstract
Forty halogenated hydrocarbons of known rodent carcinogenicity (24 carcinogens, 16 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, and hepatocarcinogens, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 40 chemicals on four biochemical assays [hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)] were determined. Composite predictive parameters are defined as follows: CP = [ODC and P450], CT = [ALT and ODC], and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 58%, specificity 81%, positive predictivity 82%, negative predictivity 57%, and concordance 68%. The concordance for the Ames test (45%) and structural alerts (SA; 46%) was much lower. TS also outperformed the Ames test and SA in producing fewer false positives (the specificity of TS was 81% vs. only 63% for the Ames test and 57% for SA). For predicting the carcinogenicity of the most difficult halogenated hydrocarbons (Ames and SA negative chemicals), TS was capable of successfully predicting the carcinogenicity of 8 (carbon tetrachloride, chloroform, alpha-hexachlorocyclohexane, kepone, mirex, monuron, p,p'-DDE, and 2,4,6-trichlorophenol) out of 16 of these non-DNA-reactive halogenated hydrocarbon carcinogens. All 8 of these halogenated hydrocarbons were positive in either CP or CT. This evidence shows that nongenotoxic carcinogenesis is best predicted by nongenotoxic parameters such as CP or CT (components of the predictor TS).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.