Abstract

Abstract The rock mechanical behaviour of reservoir rocks is important in the design and implementation of drilling and production programmes. Traditionally rock mechanical properties are obtained from direct measurement on core samples or from mechanical calculations on acoustic wireline log measurements. This paper reports the rock mechanical properties of many different reservoir rocks of different porosities. This has led to the development of a new method of predicting rock mechanical properties directly from porosity. The paper discusses the measurement of experimentally derived porosity, elastic moduli and fracture strength parameters and the intetpretation of these mechanical properties results into direct correlations with porosity. The application of these results to obtain continuous rock mechanical property plots of the reservoir from wireline derived porosity is discussed. The practical use of these rock mechanical property profiles in drilling, production and enhanced reservoir simulation is also emphasised. Porosity (), modulus of elasticity (E), Poisson's Ratio (v), uniaxial compressive strength (UCS), cohesion (), angle of internal friction (), and triaxial stress factor (k), were measured on samples from a wide range of North Sea reservoirs using a conventional triaxial testing machine. This paper describes the procedure used and presents the correlations obtained from plotting each of the rock mechanical properties against porosity. The derivation of wireline porosities along with empirical corrections are presented and the results of applying the correlations to these wireline derived porosities to produce continuous rock mechanical property plots are discussed. Logs were calibrated to core-measured values to reveal realistic elastic and inelastic moduli profiles. The continuous property logs provide a reasonable estimate of the possible behaviour at discrete points throughout the reservoir interval, but they are limited in their description of the behaviour of individual beds as coherent bodies. A technique has been developed to pick out these individual beds and assess how they will perform as Rock Mechanical Coherent Units, i.e. sets of beds that perform in a similar or dissimilar manner to adjacent layers. Finally a discussion on how the results are used to aid production and generate enhanced reservoir simulation will be presented. P. 169

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call