Abstract

BackgroundIn this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared.ResultsResults clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant “signals” during the “early warning” period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r2 and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts.ConclusionsProcess-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and – in cases when training datasets are available – offer a potentially greater adaptability to new contexts.

Highlights

  • In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network

  • M5Rules rule induction In order to build a dataset for predictive modelling with the Rice Blast Severity index as output, we used the following inputs to the M5Rules algorithm: daily maximums and minimums for air temperature, relative humidity and leaf wetness, together with moving averages for the previous 1, 3

  • Running process-based and machine learning models As our objective was to detect the presence of Rice Blast and obtain an early warning signal for an increase in blast severity, a graphic representation was used which clearly shows the model outputs and their degree of correspondence with the real Rice Blast severity index

Read more

Summary

Introduction

We compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. Rice (Oryza sativa L.), after wheat, is a major staple crop for more than half of the world’s population [1], with more than 3.5 billion people depending on rice for more than 20% of their calories demand. This includes 70% of the world’s 1.3 billion poorest who live in Asia, where rice is the predominant crop. Fungicide applications still remain the most effective method for controlling rice blast, despite raising doubts on the environmental impact of chemicals and on their role in inducing fungicide resistance within the pathogen populations [23]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.