Abstract
BackgroundAccurate patient-specific predictions on return-to-work after traumatic brain injury (TBI) can support both clinical practice and policymaking. The use of machine learning on large administrative data provides interesting opportunities to create such prognostic models. AimThe current study assesses whether return-to-work one year after TBI can be predicted accurately from administrative data. Additionally, this study explores how model performance and feature importance change depending on whether a distinction is made between mild and moderate-to-severe TBI. MethodsThis study used a population-based dataset that combined discharge, claims and social security data of patients hospitalized with a TBI in Belgium during the year 2016. The prediction of TBI was attempted with three algorithms, elastic net logistic regression, random forest and gradient boosting and compared in their performance by their accuracy, sensitivity, specificity and area under the receiver operator curve (ROC AUC). ResultsThe distinct modelling algorithms resulted in similar results, with 83% accuracy (ROC AUC 85%) for a binary classification of employed vs. not employed and up to 76% (ROC AUC 82%) for a multiclass operationalization of employment outcome. Modelling mild and moderate-to-severe TBI separately did not result in considerable differences in model performance and feature importance. The features of main importance for return-to-work prediction were related to pre-injury employment. DiscussionWhile clearly offering some information beneficial for predicting return-to-work, administrative data needs to be supplemented with additional information to allow further improvement of patient-specific prognose.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.