Abstract

Metaiodobenzylguanidine (MIBG) scans are a radionucleotide imaging modality that undergo Curie scoring to semiquantitatively assess neuroblastoma burden, which can be used as a marker of therapy response. We hypothesized that a convolutional neural network (CNN) could be developed that uses diagnostic MIBG scans to predict response to induction chemotherapy. We analyzed MIBG scans housed in the International Neuroblastoma Risk Group Data Commons from patients enrolled in the Children's Oncology Group high-risk neuroblastoma study ANBL12P1. The primary outcome was response to upfront chemotherapy, defined as a Curie score ≤ 2 after four cycles of induction chemotherapy. We derived and validated a CNN using two-dimensional whole-body MIBG scans from diagnosis and evaluated model performance using area under the receiver operating characteristic curve (AUC). We also developed a clinical classification model to predict response on the basis of age, stage, and MYCN amplification. Among 103 patients with high-risk neuroblastoma included in the final cohort, 67 (65%) were responders. Performance in predicting response to upfront chemotherapy was equivalent using the CNN and the clinical model. Class-activation heatmaps verified that the CNN used areas of disease within the MIBG scans to make predictions. Furthermore, integrating predictions using a geometric mean approach improved detection of responders to upfront chemotherapy (geometric mean AUC 0.73 v CNN AUC 0.63, P < .05; v clinical model AUC 0.65, P < .05). We demonstrate feasibility in using machine learning of diagnostic MIBG scans to predict response to induction chemotherapy for patients with high-risk neuroblastoma. We highlight improvements when clinical risk factors are also integrated, laying the foundation for using a multimodal approach to guiding treatment decisions for patients with high-risk neuroblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.