Abstract
Intensive multi-agent chemotherapy regimens and the introduction of risk-stratified therapy have substantially improved cure rates for children with acute lymphoblastic leukaemia (ALL). Current risk allocation schemas are imperfect, as some children are classified as lower-risk and treated with less intensive therapy relapse, while others deemed higher-risk are probably over-treated. Most cooperative groups previously used morphological clearance of blasts in blood and marrow during the initial phases of chemotherapy as a primary factor for risk group allocation; however, this has largely been replaced by the detection of minimal residual disease (MRD). Other than age and white blood cell count (WBC) at presentation, many clinical variables previously used for risk group allocation are no longer prognostic, as MRD and the presence of sentinel genetic lesions are more reliable at predicting outcome. Currently, a number of sentinel genetic lesions are used by most cooperative groups for risk stratification; however, in the near future patients will probably be risk-stratified using genomic signatures and clustering algorithms, rather than individual genetic alterations. This review will describe the clinical, biological, and response-based features known to predict relapse risk in childhood ALL, including those currently used and those likely to be used in the near future to risk-stratify therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.