Abstract

The subcellular location of a protein is highly related to its function. Identifying the location of a given protein is an essential step for investigating its related problems. Traditional experimental methods can produce solid determination. However, their limitations, such as high cost and low efficiency, are evident. Computational methods provide an alternative means to address these problems. Most previous methods constantly extract features from protein sequences or structures for building prediction models. In this study, we use two types of features and combine them to construct the model. The first feature type is extracted from a protein–protein interaction network to abstract the relationship between the encoded protein and other proteins. The second type is obtained from gene ontology and biological pathways to indicate the existing functions of the encoded protein. These features are analyzed using some feature selection methods. The final optimum features are adopted to build the model with recurrent neural network as the classification algorithm. Such model yields good performance with Matthews correlation coefficient of 0.844. A decision tree is used as a rule learning classifier to extract decision rules. Although the performance of decision rules is poor, they are valuable in revealing the molecular mechanism of proteins with different subcellular locations. The final analysis confirms the reliability of the extracted rules. The source code of the propose method is freely available at https://github.com/xypan1232/rnnloc

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call