Abstract
Protein structure prediction is one of the most important problems in modern computational biology. Protein secondary structure prediction is a key step in prediction of protein tertiary structure. There have emerged many methods based on machine learning techniques, such as neural networks (NN) and support vector machine (SVM) etc., to focus on the prediction of the secondary structures. In this paper, a new method was proposed based on SVM. Different from the existing methods, this method takes into account of the physical-chemical properties and structure properties of amino acids. When tested on the most popular dataset CB513, it achieved a Q(3) accuracy of 0.7844, which illustrates that it is one of the top range methods for protein of secondary structure prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.