Abstract

Abstract. The fields of eco-hydrological modelling and extreme flow prediction and management demand detailed information of streamflow intermittency and its corresponding landscape controls. Innovative sensing technology for monitoring of streamflow intermittency in perennial rivers and intermittent reaches improves data availability, but reliable maps of streamflow intermittency are still rare. We used a large dataset of streamflow intermittency observations and a set of spatial predictors to create logistic regression models to predict the probability of streamflow intermittency for a full year as well as wet and dry periods for the entire 247 km2 Attert catchment in Luxembourg. Similar climatic conditions across the catchment permit a direct comparison of the streamflow intermittency among different geological and pedological regions. We used 15 spatial predictors describing land cover, track (road) density, terrain metrics, soil and geological properties. Predictors were included as local-scale information, represented by the local value at the catchment outlet and as integral catchment information calculated as the mean catchment value over all pixels upslope of the catchment outlet. The terrain metrics catchment area and profile curvature were identified in all models as the most important predictors, and the model for the wet period was based solely on these two predictors. However, the model for the dry period additionally comprises soil hydraulic conductivity and bedrock permeability. The annual model with the most complex predictor set contains the predictors of the dry-period model plus the presence of tracks. Classifying the spatially distributed streamflow intermittency probabilities into ephemeral, intermittent and perennial reaches allows the estimation of stream network extent under various conditions. This approach, based on extensive monitoring and statistical modelling, is a first step to provide detailed spatial information for hydrological modelling as well as management practice.

Highlights

  • Even though intermittent streams and rivers represent more than half of the global stream network (Datry et al, 2014), they have been studied to a far lesser degree than their perennial counterparts

  • These intermittent streams in temperate regions have only recently gotten more attention (e.g. Buttle et al, 2012; Stubbington et al, 2017; Jensen et al, 2017, 2018, 2019; Kaplan et al, 2019a; Prancevic and Kirchner, 2019). Streamflow intermittency in these regions may change in time depending on seasonal climate conditions or in response to rainfall or snowmelt events (Buttle et al, 2012), whereas in the spatial dimension it is controlled by the physiographic composition of the landscape, including geology, pedology, topography and land cover

  • While log(A) and Cpr had a significant contribution to both models, the predictors of soil hydraulic conductivity and bedrock permeability were only significant for the dry period (Table 4)

Read more

Summary

Introduction

Even though intermittent streams and rivers represent more than half of the global stream network (Datry et al, 2014), they have been studied to a far lesser degree than their perennial counterparts. In temperate regions the occurrence of intermittent streams is commonly limited to headwaters, and the wetter climate generally provides enough overland flow and groundwater recharge to maintain perennial rivers for large parts of the river system (Jaeger et al, 2017). These intermittent streams in temperate regions have only recently gotten more attention Streamflow intermittency in these regions may change in time depending on seasonal climate conditions or in response to rainfall or snowmelt events (Buttle et al, 2012), whereas in the spatial dimension it is controlled by the physiographic composition of the landscape, including geology, pedology, topography and land cover

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call