Abstract

In this work, we have evaluated the influence of temperature and pressure on the mechanism of furan oxidation by the OH radical. The stationary points on the potential energy surface were described at the M06-2X/aug-cc-pVTZ level of theory. In the kinetic treatment at the high-pressure limit (HPL), we have combined the multistructural canonical variational theory with multidimensional small-curvature tunneling corrections and long-range transition state theory. The system-specific quantum Rice-Ramsperger-Kassel theory was employed to estimate the pressure-dependent rate. In the HPL, the OH addition on the α carbon is the dominant pathway in the mechanism, producing a product via the ring-opening process, also confirmed by the product branching ratio calculations. The overall rate constant, obtained by a kinetic Monte Carlo simulation, reads the form koverall=5.22×10-13T/3001.10⁡exp1247(K/T) and indicates that the furan oxidation by OH radicals is a pressure-independent reaction under tropospheric conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.