Abstract

Lung resection for primary bronchogenic carcinoma in the setting of chronic obstructive pulmonary disease often requires a detailed assessment of lung function to avoid perioperative complications and long-term disability. The aim of this study was to test the hypothesis that a novel technique of spiral computed tomographic (CT) subtraction imaging provides accuracy equal to the current standard of radioisotope perfusion scintigraphy in predicting postoperative lung function. Preoperative lung function, radioisotope perfusion scintigraphy, spiral CT subtraction imaging, and assessment of postoperative lung function were performed in 25 patients with surgically resectable primary bronchogenic carcinoma. Comparisons of predicted postoperative lung function between the two modalities and to true postoperative lung function were performed using Pearson's correlation and linear regression analysis. Among the 25 patients enrolled in the study, there was a high degree of agreement between the predicted value of postoperative forced expiratory lung volume in 1 second (FEV(1)) generated on novel contrast CT subtraction imaging and that on radioisotope perfusion scintigraphy (r = 0.96, P < .001). Furthermore, there was a strong correlation between the predicted and actual postoperative FEV(1) values for both imaging modalities (r = 0.87, P < .001, and r = 0.88, P < .001, respectively), among the 14 patients completing the study protocol. A novel technique of CT subtraction imaging is equally accurate at predicting postoperative lung function as radioisotope perfusion scintigraphy, which may obviate the need for additional nuclear imaging in the context of the preoperative assessment of resectable lung cancer in high-risk patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call