Abstract
Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.