Abstract

Genetic data are increasingly used for fast, efficient, and cost-effective monitoring of natural populations and assessment of extinction risk in species management. A single modern molecular snapshot is typically used to infer population size and vulnerability, yet for species with unknown and potentially complex genetic metapopulation structure, this technique may not effectively predict vulnerability. Darwin’s finches, which are well-represented in museum collections, offer a unique opportunity to test the effectiveness of predicting extinction vulnerability in species with complex structure, such as naturally fragmented populations. In this study, we compared ancient DNA from ~ 100 year old extinct and extant Darwin’s finch populations in the Galapagos Islands to determine whether single time point genetic assessments in the past accurately predicted extinction risk, or if other factors such as metapopulation dynamics could mask population declines. Of eight extinct populations, only one had significantly reduced genetic variation compared to an extant population of similar characteristics. Contrary to our prediction that populations would have decreased genetic diversity prior to extinction when compared to persisting populations, at least one measure of genetic diversity was significantly higher in six of the eight extinct populations when compared to extant populations. Simulations lend support to the hypothesis that unaccounted for metapopulation structure may explain the observed pattern in many species. Therefore, models of genetic diversity reflecting population extinction potential may be inadequate for highly-mobile species with metapopulation dynamics such as the Galapagos finches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.