Abstract

Although electrospinning of polyvinylidene fluoride (PVDF) has been studied for more than 10 years, the crystalline phase differentiation of the electrospun mats is still normally through the combination of different characterization techniques, and the relationship between polymorphism and morphology of the fibers in electrospun PVDF membranes has never been reported. Here, we show their close relationships by conducting room-temperature electrospinning experiments on various polymer/solvent systems. The electrospun membranes full of bead-free fibers have a very high fraction of β-phase, F(β), over 90%, and high orientation, whereas the membranes comprising beads and/or a large number of beaded fibers most often result in a low fraction of β-phase (F(β) normally below 50%) and low orientation. On the other hand, electrospun membranes consisting of both bead-free fibers and a very limited number of beaded fibers showed a medium high fraction of β-phase, F(β) more than 70% but less than 90%. These findings suggest the feasibility of intuitively predicting the crystalline phase of electrospun PVDF membranes directly by their morphologies, which is obviously simple, inexpensive and convenient for future investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call