Abstract

AbstractA three‐step multiscale modeling approach to predict and thus control polymer properties, such as flow behavior and linear as well as non‐linear rheology, based on polymerization conditions, is developed and applied for long‐chain branched low‐density polyethylene (LDPE). The approach consists of i) a deterministic kinetic model for the description of conversion and average polymer characteristics, ii) a hybrid stochastic Monte Carlo model for the description of the polymeric microstructure, and iii) a rheology model for the evaluation of polymer melt flow properties. The modeling approach is validated via high‐pressure miniplant LDPE samples with a special focus on long‐chain branching. In the next step, the modeling approach can be successfully transferred to a tubular reactor of industrial scale. Due to its universality the approach opens up possible applications for other polymer and also copolymer systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call