Abstract

Abstract Corruption has pervasive effects on economic development and the well-being of the population. Despite being crucial and necessary, fighting corruption is not an easy task because it is a difficult phenomenon to measure and detect. However, recent advances in the field of artificial intelligence may help in this quest. In this article, we propose the use of machine-learning models to predict municipality-level corruption in a developing country. Using data from disciplinary prosecutions conducted by an anti-corruption agency in Colombia, we trained four canonical models (Random Forests, Gradient Boosting Machine, Lasso, and Neural Networks), and ensemble their predictions, to predict whether or not a mayor will commit acts of corruption. Our models achieve acceptable levels of performance, based on metrics such as the precision and the area under the receiver-operating characteristic curve, demonstrating that these tools are useful in predicting where misbehavior is most likely to occur. Moreover, our feature-importance analysis shows us which groups of variables are most important in predicting corruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.