Abstract
Calculating polarizabilities of large clusters with first-principles techniques is challenging because of the unfavorable scaling of computational cost with cluster size. To address this challenge, we demonstrate that polarizabilities of large hydrogenated silicon clusters containing thousands of atoms can be efficiently calculated with machine learning methods. Specifically, we construct machine learning models based on the smooth overlap of atomic positions (SOAP) descriptor and train the models using a database of calculated random-phase approximation polarizabilities for clusters containing up to 110 silicon atoms. We first demonstrate the ability of the machine learning models to fit the data and then assess their ability to predict cluster polarizabilities using k-fold cross validation. Finally, we study the machine learning predictions for clusters that are too large for explicit first-principles calculations and find that they accurately describe the dependence of the polarizabilities on the ratio of hydrogen to silicon atoms and also predict a bulk limit that is in good agreement with previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.