Abstract

BackgroundConcerns have recently been raised regarding the safety of potential human exposure to bisphenol A (BPA), an industrial chemical found in some polycarbonate plastics and epoxy resins. Of particular interest is the exposure of young children to BPA via food stored in BPA-containing packaging.ObjectivesIn this study we assessed the age dependence of the toxicokinetics of BPA and its glucuronidated metabolite, BPA-Glu, using a coupled BPA–BPA-Glu physiologically based toxicokinetic (PBTK) model.MethodsUsing information gathered from toxicokinetic studies in adults, we built a PBTK model. We then scaled the model to children < 2 years of age based on the age dependence of physiologic parameters relevant for absorption, distribution, metabolism, and excretion.ResultsWe estimated the average steady-state BPA plasma concentration in newborns to be 11 times greater than that in adults when given the same weight-normalized dose. Because of the rapid development of the glucuronidation process, this ratio dropped to 2 by 3 months of age. Simulation of typical feeding exposures, as estimated by regulatory authorities, showed a 5-fold greater steady-state BPA plasma concentration in 3- and 6-month-olds compared with adults, reflecting both a reduced capacity for BPA metabolism and a greater weight-normalized BPA exposure. Because of uncertainty in defining the hepatic BPA intrinsic clearance in adults, these values represent preliminary estimates.ConclusionsSimulations of the differential BPA dosimetry between adults and young children point to the need for more sensitive analytical methods for BPA to define, with greater certainty, the adult hepatic BPA intrinsic clearance, as well as a need for external exposure data in young children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.