Abstract

COSMO-RS, the Conductor-like Screening Model for Real Solvents, has been used to predict a set of basic partition coefficients of 22 (alkylated) naphthalenes. To validate the approach, methyl-, dimethyl-, and ethylnaphthalenes have been chosen, according to the availability of experimental data. Then, predictions have been extended to diisopropylnaphthalenes. Given the model's expected uncertainty intervals, COSMO-RS predictions of aqueous solubilities, (subcooled) vapor pressures, Henry's law constants, as well as octanol-water partition coefficients, are in agreement with available literature data. Simultaneous overestimation of aqueous solubilities and vapor pressures of comparable magnitude leads to partial error cancellation in the Henry's law constants. Based on physico-chemical property data obtained with COSMO-RS, the Mackay Level III fugacity model, a steady-state, non equilibrium, and regional-scale model, has been applied to exemplary evaluate the tendency of 2,6-diisopropylnaphthalene to migrate between media by modelling emissions to each individual medium and calculating the amount present at steady state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call