Abstract
Accurate and reliable ultra-short-term prediction of solar irradiance in photovoltaic (PV) greenhouses at low-latitude plateau is essential to precisely control electricity consumption of greenhouse equipment and ensure high quality crop yields. However, the irradiance in the low-latitude plateau has problems such as poor data quality, limited short-term prediction accuracy, and insufficient ability to capture nonlinear characteristics. Therefore, in order to achieve efficient utilization of photovoltaic resources, this study proposed a new hybrid integrated model TTAO-CNN-BiGRU-Attention framework to predict ultra-short-term photovoltaic greenhouse irradiance in the region. Monthly and seasonal characteristics of irradiance in low-latitude plateau areas were analyzed by statistical methods. The performance of the proposed model was verified using 9 different models for 5 different data volumes and 4 different seasons. Comprehensive analysis results show that Total radiant instantaneous(TRI) demonstrates a seasonal trend, generally low in spring, high in summer and autumn, relatively stable in autumn and winter. The monthly trend initially increases and then decreases, reaching the highest value of the year in September. The scheme proposed in this paper makes full use of the advantages of CNN, BiGRU, Attention and TTAO, greatly improving the comprehensive prediction ability of the model. In predicting different data amounts, 1 year prediction performance was the best, with RMSE, MAE, MAPE and R2 reaching 70.61 W/m2, 31 W/m2, 9.3% and 95.84%, respectively. With regard to different seasons, autumn prediction performance was the best, with RMSE, MAE, MAPE and R2 reaching 66.27 W/m2, 31.02 W/m2, 8.37% and 95.87%, respectively. The TRI prediction curve of the proposed model was closer to the actual value than other comparison models. The study found that the TTAO-CNN-BiGRU-Attention model is more accurate and stable than many traditional models in predicting ultra-short-term TRI in low-latitude plateau photovoltaic greenhouses, which can provide a reference for the comprehensive performance of PV greenhouse irradiance prediction models and precise regulation of energy supply in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.