Abstract

Developing a microscopic understanding of spin decoherence is essential to advancing quantum technologies. Electron spin decoherence due to atomic vibrations (phonons) plays a special role as it sets an intrinsic limit to the performance of spin-based quantum devices. Two main sources of phonon-induced spin decoherence-the Elliott-Yafet and Dyakonov-Perel mechanisms-have distinct physical origins and theoretical treatments. Here, we show calculations that unify their modeling and enable accurate predictions of spin relaxation and precession in semiconductors. We compute the phonon-dressed vertex of the spin-spin correlation function with a treatment analogous to the calculation of the anomalous electron magnetic moment in QED. We find that the vertex correction provides a giant renormalization of the electron spin dynamics in solids, greater by many orders of magnitude than the corresponding correction from photons in vacuum. Our Letter demonstrates a general approach for quantitative analysis of spin decoherence in materials, advancing the quest for spin-based quantum technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.