Abstract
Convolutional Neural Networks (CNNs) can perform similarly or better than standard genomic prediction methods when sufficient genetic, environmental, and management data are provided. Predicting phenotypes from genetic (G), environmental (E), and management (M) conditions is a long-standing challenge with implications to agriculture, medicine, and conservation. Most methods reduce the factors in a dataset (feature engineering) in a subjective and potentially oversimplified manner. Deep neural networks such as Multilayer Perceptrons (MPL) and Convolutional Neural Networks (CNN) can overcome this by allowing the data itself to determine which factors are most important. CNN models were developed for predicting agronomic yield from a combination of replicated trials and historical yield survey data. The results were more accurate than standard methods when tested on held-out G, E, and M data (r = 0.50 vs. r = 0.43), and performed slightly worse than standard methods when only G was held out (r = 0.74 vs. r = 0.80). Pre-training on historical data increased accuracy compared to trial data alone. Saliency map analysis indicated the CNN has "learned" to prioritize many factors of known agricultural importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.