Abstract

Street attributes are thought to play an important role in influencing pedestrian route choices. Faced with alternatives, pedestrians have been observed to choose faster, safer, more comfortable, more interesting, or more beautiful routes. Literature on pedestrian route choice has provided methods for assessing the likelihood of such options using discrete choice models. However, route choice estimation, which is data intensive and computationally challenging, remains infrequently deployed in planning mobility analysis practice. Even when coefficients from previous studies are available, operationalizing them in foot-traffic predictions has been rare due to uncertainty involved in the transferability of behavioral effects from one context to another, as well as computational challenges of predicting route choice with custom attributes. This paper explores a simpler method of route choice prediction, implemented in the Urban Network Analysis toolbox, which assigns probabilities to available route options based on distance alone. We compare the accuracy of distance-weighted approaches to the more detailed utility-weighted approach using a large dataset of observed GPS pedestrian traces that include numerous trips between same intersections pairs in downtown San Francisco as a benchmark. Even though a utility-weighted model matches observed pedestrian flows most accurately, a distance-weighted model is only marginally inferior, on average. However, shortest-distance and highest-utility route predictions are both significantly inferior to the utility-weighted and distance-weighted sample-enumeration methods. Our findings suggest that simplified assumptions can be used to predict pedestrian flow in practice with existing software, opening pedestrian flow predictions to a wider range of planning and transportation applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call