Abstract
The size effect and strength discreteness observed in concrete stem primarily from its mesoscopic heterogeneity. Despite this understanding, establishing a clear relationship between the macroscopic and mesoscopic mechanical behaviors remains a considerable challenge. While some advancements have been made in studying the size effect of concrete, particularly regarding the rate effect, there has been relatively less emphasis on addressing the influence of random meso-component distribution. To investigate the tensile behaviors of concrete across varying low strain rates (10−5 s−1∼10−1 s−1) and model sizes, a meso-model dataset was established comprising double edge notched concrete with mortar matrix, coarse aggregate, and interface transition zone. A convolutional neural network introducing physical parameters was implemented to capture the potential non-linear relationship of concrete from meso-structure, strain rate and model size to tensile peak stress. Subsequently, the data-driven solution for the “Static and Dynamic unified” Size Effect Law (SD-SEL) in concrete tensile strength was developed by deconstructing the back propagation (BP) neural network to enhance its rationality, followed by the verification of the proposed formula. The findings indicate that the Data-Physical Hybrid-Driven approach effectively analyzes the mechanical response of concrete without the need for complex mechanical derivations, offering a promising tool for studying the size effect of composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.