Abstract

Abstract. The growing abundance of data is conducive to using numerical methods to relate air quality, meteorology and emissions to address which factors impact pollutant concentrations. Often, it is the extreme values that are of interest for health and regulatory purposes (e.g., the National Ambient Air Quality Standard for ozone uses the annual maximum daily fourth highest 8 h average (MDA8) ozone), though such values are the most challenging to predict using empirical models. We developed four different computational models, including the generalized additive model (GAM), multivariate adaptive regression splines, random forest, and support vector regression, to develop observation-based relationships between the fourth highest MDA8 ozone in the South Coast Air Basin and precursor emissions, meteorological factors and large-scale climate patterns. All models had similar predictive performance, though the GAM showed a relatively higher R2 value (0.96) with a lower root mean square error and mean bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.