Abstract

Abstract Background , Questions and Methods Recent studies have emphasized that local and geographic patterns of species distributions can be set by a variety of factors related to weather and climate, including exposure to lethal environmental conditions, indirect effects on consumers and competitors, and sublethal effects of physiological stress on growth and reproduction. Predicting where, when and with what magnitude these impacts are most (and least) likely to occur is imperative if we are to effectively plan for (i.e. adapt to) the effects of climate change.We developed a series of methods for translating patterns of environmental “signals” into organismal responses in intertidal ecosystems. Importantly, “organismal climatologies” – long term patterns of organism temperature measured using in situ biomimetic sensors - show distinct differences from patterns based on environmental temperature (air or water temperature). Similarly, we explored the use of dynamic energy budget models, linked to heat budget models of animal temperature, to examine temporal and spatial patterns of sublethal stress and growth. Results and Conclusions Comparisons of four different metrics of stress- seasonal averages, extreme temperatures, number of “stressful days” (>32°C) and return time of stress events – show that temporal and spatial patterns of sublethal stress do not always track patterns of lethal exposure. In other words, simply knowing average temperature often tells us very little about exposure to extremes and vice versa. These results are consistent with the idea that extreme events can occur during the temporal synchrony of multiple “normal” events- for example low wave splash, extreme low tides and high solar radiation. Results also suggest that the combination of heat budget models with dynamic energy budgets are potentially an effective way to predict spatial patterns of intertidal organisms, but that we still need more physiological data regarding the role of aerial body temperature in driving growth and reproduction.

Highlights

  • Zona&on: inter&dal ecosystems have long served as models for examining role of weather in driving pa9erns of distribu&on

  • Most niche models are based on correla'ons with large-­‐scale environmental variables; i.e. realized niche space of organism

  • Can we create a framework that considers niche space based on func'onal traits of the organism, and can forecast sublethal processes such as growth and reproduc'on as well as survival?

Read more

Summary

Introduction

Zona&on: inter&dal ecosystems have long served as models for examining role of weather in driving pa9erns of distribu&on. La'tudinal shiHs of up to 50km/decade (reviewed in Helmuth et al 2006) Many organisms are living “close to the edge” (e.g., Somero, Pörtner) Even well within range boundaries, condi'ons may be subop'mal, even though no evidence of lethality (Beukema, e.g.) This means that slight increases in stress may lead to sudden collapses along significant por&ons of ranges

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.