Abstract

The construction of solar energy facilities can have positive or negative impacts on biodiversity depending on siting and associated land use transitions. We identified drivers of solar siting and quantified patterns of buildout in states surrounding the Chesapeake Bay watershed – a biodiversity hotspot with numerous ecosystem services. Using a convolutional neural network, we mapped the footprints of ground-mounted solar arrays present in satellite imagery annually from 2017 to 2021 in Delaware, Maryland, Pennsylvania, New York, Virginia, and West Virginia. As of 2021, we identified 958 solar arrays covering 52.3 km2 built primarily on previously cultivated land, while avoiding natural landcover. We fit a binomial-Weibull model to these solar timeseries data in a hierarchical, Bayesian framework to quantify the relationship between geospatial covariates and rate of solar development. Solar array construction rate increased in cultivated areas, areas of lower agricultural suitability, lower slope, lower forest cover, lower biodiversity protection, and greater distances from roads. We also estimated changes in the rate of solar construction over time and found differences among states: acceleration in Virginia and deceleration in New York. We used parameter estimates to map the relative likelihood of future solar development across the study area. This methodology can be used to anticipate where solar is likely to be built in different landscapes and how these patterns align with conservation goals. Around the Chesapeake Bay watershed, the selection of lower quality agricultural areas for solar energy minimizes removal of important habitat and provides opportunities for native plant and pollinator restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call