Abstract

ObjectivesThis study aimed to evaluate the performance of machine learning and regression methods in the prediction of 3-level version of EQ-5D (EQ-5D-3L) index scores from a large diverse data set. MethodsA total of 30 studies from 3 countries were combined. Predictions were performed via eXtreme Gradient Boosting classification (XGBC), eXtreme Gradient Boosting regression (XGBR) and ordinary least squares (OLS) regression using 10-fold cross-validation and 80%/20% partition for training and testing. We evaluated 6 prediction scenarios using 3 samples (general population, patients, total) and 2 predictor sets: demographic and disease-related variables with/without patient-reported outcomes. Model performance was evaluated by mean absolute error and percent of predictions within clinically irrelevant error range and within correct health severity group (EQ-5D-3L index <0.45, 0.45-0.926, >0.926). ResultsThe data set involved 26 318 individuals (clinical settings n = 6214, general population n = 20 104) and 26 predictor variables plus diagnoses. Using all predictors and the total sample, mean absolute error values were 0.153, 0.126, and 0.131, percent of predictions within clinically irrelevant error range were 47.6%, 39.5%, and 37.4%, and within the correct health severity group were 56.3%, 64.9%, and 63.3% by XGBC, XGBR, and OLS, respectively. The performance of models depended on the applied evaluation criteria, the target population, the included predictors, and the EQ-5D-3L index score range. ConclusionsRegression models (XGBR and OLS) outperformed XGBC, yet prediction errors were outside the clinically irrelevant error range for most respondents. Our results highlight the importance of systematic patient-reported outcome (EQ-5D) data collection. Dialogs between artificial intelligence and outcomes research experts are encouraged to enhance the value of accumulating data in health systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.