Abstract
In Great Britain, limited studies have employed machine learning methods to predict air pollution especially ozone (O3) with high spatiotemporal resolution. This study aimed to address this gap by developing random forest models for four key pollutants (fine and inhalable particulate matter [PM2.5 and PM10], nitrogen dioxide [NO2] and O3) by integrating multiple-source predictors at a daily level and 1-km resolution. The out-of-bag R2 (root mean squared error, RMSE) between predictions from models and measurements from monitoring stations in 2006–2013 was 0.85 (3.63 μg/m3) for PM2.5, 0.77 (6.00 μg/m3) for PM10, 0.85 (9.71 μg/m3) for NO2, and 0.85 (9.39 μg/m3) for maximum daily 8-h average (MDA8) O3 at daily level, and the predicting accuracy was higher at monthly and annual level. The high-resolution predictions captured characterized spatiotemporal patterns of the four pollutants. Higher concentrations of PM2.5, PM10, and NO2 were distributed in densely populated southern regions of Great Britain while O3 showed an inverse spatial pattern in general, which could not be fully depicted by monitoring stations. Therefore, predictions produced in this study could improve exposure assessment with less exposure misclassification and flexible exposure windows for future epidemiological studies to investigate the impact of air pollution across Great Britain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.