Abstract

BackgroundIn recent decades, detecting protein complexes (PCs) from protein-protein interaction networks (PPINs) has been an active area of research. There are a large number of excellent graph clustering methods that work very well for identifying PCs. However, most of existing methods usually overlook the inherent core-attachment organization of PCs. Therefore, these methods have three major limitations we should concern. Firstly, many methods have ignored the importance of selecting seed, especially without considering the impact of overlapping nodes as seed nodes. Thus, there may be false predictions. Secondly, PCs are generally supposed to be dense subgraphs. However, the subgraphs with high local modularity structure usually correspond to PCs. Thirdly, a number of available methods lack handling noise mechanism, and miss some peripheral proteins. In summary, all these challenging issues are very important for predicting more biological overlapping PCs.ResultsIn this paper, to overcome these weaknesses, we propose a clustering method by core-attachment and local modularity structure, named CALM, to detect overlapping PCs from weighted PPINs with noises. Firstly, we identify overlapping nodes and seed nodes. Secondly, for a node, we calculate the support function between a node and a cluster. In CALM, a cluster which initially consists of only a seed node, is extended by adding its direct neighboring nodes recursively according to the support function, until this cluster forms a locally optimal modularity subgraph. Thirdly, we repeat this process for the remaining seed nodes. Finally, merging and removing procedures are carried out to obtain final predicted clusters. The experimental results show that CALM outperforms other classical methods, and achieves ideal overall performance. Furthermore, CALM can match more complexes with a higher accuracy and provide a better one-to-one mapping with reference complexes in all test datasets. Additionally, CALM is robust against the high rate of noise PPIN.ConclusionsBy considering core-attachment and local modularity structure, CALM could detect PCs much more effectively than some representative methods. In short, CALM could potentially identify previous undiscovered overlapping PCs with various density and high modularity.

Highlights

  • In recent decades, detecting protein complexes (PCs) from protein-protein interaction networks (PPINs) has been an active area of research

  • Our findings suggest that node betweenness and node degree are two good topology characters to distinguish between the core nodes and overlapping nodes

  • ClusterONE ignores a basic fact that overlapping nodes could belong to multiple complexes according to overlapping nodes have higher degree, and overlapping nodes are considered as seed nodes, which can lead to some high overlapping protein complexes being wrongly considered as a single fake PC or miss some high overlapping protein complexes

Read more

Summary

Results

To overcome these weaknesses, we propose a clustering method by core-attachment and local modularity structure, named CALM, to detect overlapping PCs from weighted PPINs with noises. For a node, we calculate the support function between a node and a cluster. In CALM, a cluster which initially consists of only a seed node, is extended by adding its direct neighboring nodes recursively according to the support function, until this cluster forms a locally optimal modularity subgraph. We repeat this process for the remaining seed nodes. CALM is robust against the high rate of noise PPIN

Conclusions
Background
Methods
Results and discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call