Abstract
We present an analysis for calculating the frequency of out-of-sequence reassembly in DNA shuffling experiments. Out-of-sequence annealing events are undesirable since they typically encode non-functional proteins with missing or repetitive regions. The approach builds on the e Shuffle framework for the prediction of crossover formation using equilibrium thermodynamics and complete sequence information to model the reassembly process. An in silico case study of a set of subtilases reveals that, as expected, the presence of significant sequence identity between distant portions of the parental sequences gives rise to out-of-sequence annealing events that upon reassembly generate sequences with missing or repetitive DNA segments. The frequency of these events increases as the fragment length decreases. Interestingly, out-of-sequence annealing events are at a minimum near the annealing temperature of 55°C used in the original DNA shuffling protocol. Neither parental sequence identity nor number of shuffled parents significantly alter the extent of out-of-sequence reassembly
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.