Abstract

A feasibility study was performed to determine if CT-based radiomics could play an augmentative role in predicting neoadjuvant rectal score (NAR), locoregional failure free survival (LRFFS), distant metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) in locally advanced rectal cancer (LARC). The NAR score, which takes into account the pathological tumour and nodal stage as well as clinical tumour stage, is a validated surrogate endpoint used for early determination of treatment response whereby a low NAR score (< 8) has been correlated with better outcomes and high NAR score (> 16) has been correlated with poorer outcomes. CT images of 191 patients with LARC were used in this study. Primary tumour (GTV) and mesorectum (CTV) were contoured separately and radiomics features were extracted from both segments. Two NAR models (NAR > 16 and NAR < 8) models were constructed using Least Absolute Shrinkage and Selection Operator (LASSO) and the survival models were constructed using regularized Cox regressions. Area under curve (AUC) and time-dependent AUC were used to quantify the performance of the LASSO and Cox regression respectively, using ten folds cross validations. The NAR > 16 and NAR < 8 models have an average AUCs of 0.68 ± 0.13 and 0.59 ± 0.14 respectively. There are statistically significant differences between the clinical and combined model for LRFFS (from 0.68 ± 0.04 to 0.72 ± 0.04), DMFS (from 0.68 ± 0.05 to 0.70 ± 0.05) and OS (from 0.64 ± 0.06 to 0.66 ± 0.06). CTV radiomics features were also found to be more important than GTV features in the NAR prediction model. The most important clinical features are age and CEA for NAR > 16 and NAR < 8 models respectively, while the most significant clinical features are age, surgical margin and NAR score across all the four survival models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.